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Abstract. This report reproduces and briefly discusses an algorithm
proposed by Butz [2] for calculating a mapping between one-dimensional
values and n-dimensional values regarded as being the coordinates of
points lying on Hilbert Curves. It suggests some practical improvements
to the algorithm and presents an algorithm for calculating the inverse of
the mapping, from n-dimensional values to one-dimensional values.

1 Introduction

The concept of a space-filling curve emerged in the 19-th Century and is origi-
nally attributed to Peano [5] who expressed it in mathematical terms. The first
graphical, or geometrical, representation of the space-filling curve is attributed
to David Hilbert [3]. He illustrates the the concept in 2 dimensions but it is
applicable in any number of dimensions.

Hilbert Curves pass through every point in an n-dimensional space once
and once only in some particular order according to some algorithm. As such
they graphically express a mapping between one-dimensional values and the
coordinates of points, regarded as multi-dimensional values, since the points are
placed in a sequence according to the order in which the curve passes through
them. In this report, we call the sequence number of a point its Hilbert derived-
key.

Mappings between one and n dimensions are of interest in a number of ap-
plications, including the storage and retrieval of multi-dimensional data, as dis-
cussed by Lawder [4].

This report is concerned with methods of calculating the Hilbert derived-keys
of arbitrary points and the inverse and builds on the work of Butz.

In section 2 we briefly describe the Hilbert Curve. In section 3 we reproduce
Butz’ algorithm and example taken from his 1971 paper [2] and provide a brief
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commentary. In section 4 we suggest some useful improvements which can be
made to the algorithm. Butz does not provide an algorithm for calculating the
inverse mapping, from n-dimensional values to one-dimensional values, and so
this is given in section 5, in the same style as the original. The algorithms given in
sections 3 and 5 are implemented in the C programming languages in section 6.

2 The Hilbert Curve

The way in which a Hilbert Curve is drawn is discussed in more detail in
Lawder [4]. An insight, however, is rapidly gained from Fig. 1 showing the first
3 steps of an infinite process for the 2-dimensional case. A square is initially di-
vided into 4 sub-squares which are then ordered such that any pair of consecutive
sub-squares share a common edge. The ordering is illustrated by drawing a line
through their centre-points and this line is called a first-order curve. Figure 1(b)
shows the next step in which each sub-square is then divided into 4 sub-squares.
The sub-squares within the first and last squares of the first step are ordered
differently to ensure the adjacency property is always preserved.
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Fig. 1. Approximations of the Hilbert curve in 2 dimensions

In practical applications, the process can be terminated after k steps to pro-
duce an approximation of a space-filling curve of order k. This curve passes
through 2kn sub-squares, the centre-points of which are regarded as points in
a space of finite granularity. The Hilbert Curve manifests a useful property in
which consecutively ordered points are adjacent to each other in space.

Most previous work on the calculation of mappings is confined to the 2-
dimensional case and a review is given in Lawder’s PhD thesis [4]. Bially [1]
describes a generic set of rules for constructing state diagrams for use in calcu-
lating mappings but these rules are incomplete, requiring a process of ‘trial and
error’. Lawder’s thesis supplements and specializes Bially’s rules so that state
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diagrams can be constructed for the Hilbert curve without manual intervention.
However, the space requirements for state diagrams for the Hilbert Curve grow
exponentially with the number of dimensions and so they are only useful in up
to about 8 dimensions.

Butz’ algorithm in effect descibes a particular Hilbert Curve for each value of
n. That more than one Hilbert Curve can be drawn through any space is readily
illustrated by inverting the diagrams in Fig. 1.

3 Butz’ Algorithm for Mapping from a Hilbert

derived-key to the Coordinates of a Point

In this section, we reproduce the algorithm for mapping from a Hilbert derived-
key to the coordinates of a point, given by Butz in [2].

Butz’ algorithm is iterative, requiring a number of iterations equal to the
order of the curve. Butz summarizes the algorithm in two tables. The first,
given here in Table 1, lists working variables and specifies how they are assigned
values. These variables are ordered in the sequence in which their values are
calculated, and new values are assigned within each iteration of the algorithm.
With the exception of the variable αi, information is not provided on their
semantics in [2]. The second, given here in Table 2, provides an example of the
calculation process.

The tables make use of the following variables and terms defined in or inferred
from the paper:

n : the number of dimensions in a space.
m: the order of the curve passing through a space.
N : the number of bits in a derived-key, ie nm.
i : the number of the iteration of the algorithm, in the range [1, . . . ,m].
r : an N -bit binary Hilbert derived-key, expressed as a real number in the range

[ 0, 1).
byte: a word containing n bits.
ρ
i
j: a binary digit in r, such that r = 0.ρ1

1
ρ1
2
· · · ρ1nρ

2

1
ρ2
2
· · · ρ2nρ

3

1
ρ3
2
· · · ρmn . Thus

ρi represents the ith byte in r, such that ρi = ρi
1
ρi
2
· · · ρin.

aj: a coordinate in dimension j of the point, 〈a1, a2, · · · , an〉 whose derived-key

is r. A coordinate is also expressed as a real number in the range [ 0, 1).
α

i
j: a binary digit in a coordinate aj , such that aj = α1

jα
2

j · · ·α
m
j . Thus in

Table 1, αi = αi
1
αi
2
· · ·αi

n is an n-bit Z order derived-key formed from the
ith bits of all of the coordinates in the point 〈a1, a2, · · · , an〉.

principal position: the last, or least significant, bit position, j, in ρi such that
ρij 6= ρin. If all bits in ρi are equal, the principal position is the nth, or least
significant. The most significant bit position is considered to occupy poistion
1.

parity: the number of bits in a byte which are set to 1.
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TABLE I

Entities Used in Space-filling Curve Algorithm

Ji: An integer between 1 and n equal to the subscript of the principal position of ρi.
In the following four examples of ρi for the case n = 5, the values of Ji are 5, 2, 4
and 5, respectively (the principal positions are circled):

1 1 1 1 1✐

1 0✐1 1 1
0 0 1 1✐0
0 0 0 0 0✐

σi: A byte of n bits, such that σi

1 = ρi1, σ
i

2 = ρi2⊕ ρi1, σ
i

3 = ρi3⊕ ρi2, · · · , σ
i

n = ρin⊕ ρin−1,
where ⊕ stands for the EXCLUSIVE-OR operation.

τ i: A byte of n bits obtained by complementing σi in the nth position and then, if and
only if the resulting byte is of odd parity, complementing in the principal position.
Hence, τ i is always of even parity. Note that the parity of σi is given by the bit ρin
and that a mask for performing the second complementation may be set up in the
same process which calculates Ji.

σ̃i: A byte of n bits obtained by shifting σi right circular a number of positions equal
to

(J1 − 1) + (J2 − 1) + · · · + (Ji−1 − 1)

There is no shift in σ1.
τ̃ i: A byte of n bits obtained by shifting τ i in exactly the same way.
ωi: A byte of n bits where

ωi = ωi−1
⊕ τ̃ i−1, ω1 = 0 0 · · · 0 0

and where ⊕ indicates the EXCLUSIVE-OR operation on corresponding bits.
αi: A byte of n bits where αi = ωi

⊕ σ̃i.

Table 1. ‘TABLE I’ from [2]
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TABLE II

Example of Calculation of a from r

n = 5 m = 4 N = 20
r = 0.10011000100010111000

i 1 2 3 4 5
ρi 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0
Ji 3 4 4 2 5
σi 1 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0
τ i 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0
σ̃i 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0
τ̃ i 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0
ωi 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 1 0
αi 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0

a1 = 0.1010
a2 = 0.1011
a3 = 0.0011
a4 = 0.1101
a5 = 0.0101

Table 2. ‘TABLE II’ from [2]
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4 Some Improvements to the Algorithm Given in Table 1

The improvements described in this section emerged from insights gained in spe-
cializing Bially’s rules for producing generator tables from which state diagrams
are produced to facilitate Hilbert Curve mappings, as described by Lawder [4].

Calculation of σi: The variable σi is derived directly from the value of ρi. A
close inspection of the definition of the former shows that it is the Gray-code1

of ρi. Thus σi may be defined in a single operation rather than in n steps as
indicated in Butz’ paper:

σi ⇐ ρi ⊕ ρi/2

where ⊕ denotes the exclusive-or operation.

Calculation of τ i: In describing how the value of the variable τ i is determined,
Butz notes that the result is always of ‘even parity’, by which is meant that it
contains an even number of non-zero bits. We observe from the state diagram
generator tables produced in the manner described by Lawder [4] that this char-
acteristic is shared, specifically and only, by the first of a pair of column X2

values appearing in any row. Column X2 values encapsulate the coordinates of
the first and last points on a first order curve which ‘replaces’ a point on some
first order curve when it is transformed into a second order curve. This leads to
the conjecture that there is a correspondence between these two values and this
is supported by the results of experiments. Thus we are able to calculate values
for τ i simply, in accordance with the method for calculating the first of a pair
of column X2 entries described in [4]. This is detailed in Algorithm 1.

Algorithm 1 Simplified Calculation of τ i in Butz’ Algorithm

1: if ρi < 3 then

2: τ i
⇐ 0

3: else

4: if ρi % 2 then

5: τ i
⇐ (ρi − 1) ⊕ (ρi − 1)/2

6: else

7: τ i
⇐ (ρi − 2) ⊕ (ρi − 2)/2

8: end if

9: end if

The calculations for other variables in Butz’ algorithm are performed in our
implementation in accordance with Table 1.

1 The Gray-code sequence is a sequence of binary numbers in which any two successive
numbers differ in value in one bit position only. They are discussed in more detail
by Reingold et al [6].
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5 Procedure for Mapping from the Coordinates of a

Point to a Hilbert derived-key

Butz does not give an algorithm for mapping from the coordinates of a point
to its Hilbert derived-key. We therefore give the algorithm in Table 3, presented
in the same format as used by Butz. The values of variables Ji, τ

i and ωi are
calculated in the same way as described in Table 1. All other variables are
calculated differently.

αi: A byte of n bits, such that αi

1 = ai

1, αi

2 = ai

2, · · ·α
i

n = ai

n.
ωi: A byte of n bits where

ωi = ωi−1
⊕ τ̃ i−1, ω1 = 0 0 · · · 0 0

and where ⊕ indicates the EXCLUSIVE-OR operation on corresponding bits.
σ̃i: A byte of n bits where

σ̃i = αi
⊕ ωi, σ̃1 = α1

σi: A byte of n bits obtained by shifting σ̃i left circular a number of positions equal to

(J1 − 1) + (J2 − 1) + · · · + (Ji−1 − 1)

There is no shift in σ̃1.
ρi: A byte of n bits, such that ρi1 = σi

1, ρ
i

2 = σi

2⊕ ρi1, ρ
i

3 = σi

3⊕ ρi2, · · · , ρ
i

n = σi

n⊕ ρin−1,
where ⊕ stands for the EXCLUSIVE-OR operation.

Ji: An integer between 1 and n equal to the subscript of the principal position of ρi.
τ i: A byte of n bits obtained by complementing σi in the nth position and then, if and

only if the resulting byte is of odd parity, complementing in the principal position.
Hence, τ i is always of even parity. Note that the parity of σi is given by the bit ρin
and that a mask for performing the second complementation may be set up in the
same process which calculates Ji.

τ̃ i: A byte of n bits derived from τ i in the same way that σi is derived from σ̃i.

Table 3. Entities used in the algorithm for mapping from the coordinates of a point
to a Hilbert derived-key
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6 Source Code for the Mapping Algorithms

In this section we implement the algorithms given in sections 3 and 5 in the C
programming language. The correspondence between terms defined in section 3
and variable names used in the source code is summarized in Table 4.

Butz’ Term Program Variable

Ji J
(J1 − 1) + · · · + (Ji−1 − 1) xJ

ρi P
σi S
σ̃i tS
τ i T
τ̃ i tT
ωi W
αi A

Table 4. Key to Variables

/*
This code assumes the following:

The macro ORDER corresponds to the order of curve and is 32,

thus coordinates of points are 32 bit values.

A U_int should be a 32 bit unsigned integer.

The macro DIM corresponds to the number of dimensions in a

space.

The derived-key of a Point is stored in an Hcode which is an

array of U_int. The bottom bit of a derived-key is held in the
bottom bit of the hcode[0] element of an Hcode and the top bit

of a derived-key is held in the top bit of the hcode[DIM-1]
element of and Hcode.

g_mask is a global array of masks which helps simplyfy some
calculations - it has DIM elements. In each element, only one

bit is zeo valued - the top bit in element no. 0 and the bottom
bit in element no. (DIM - 1). eg.

#if DIM == 5 const U_int g_mask[] = {16, 8, 4, 2, 1}; #endif
#if DIM == 6 const U_int g_mask[] = {32, 16, 8, 4, 2, 1}; #endif

etc...
*/

#define DIM 3

typedef unsigned int U_int;

#define ORDER 32

typedef struct {

U_int hcode[DIM];
}Hcode;

typedef Hcode Point;
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/*===========================================================*/

/* calc_P */
/*===========================================================*/

U_int calc_P (int i, Hcode H)
{

int element;

U_int P, temp1, temp2;

element = i / ORDER;
P = H.hcode[element];
if (i % ORDER > ORDER - DIM)

{
temp1 = H.hcode[element + 1];

P >>= i % ORDER;
temp1 <<= ORDER - i % ORDER;

P |= temp1;
}
else

P >>= i % ORDER; /* P is a DIM bit hcode */

/* the & masks out spurious highbit values */
#if DIM < ORDER

P &= (1 << DIM) -1;
#endif

return P;
}

/*===========================================================*/
/* calc_P2 */

/*===========================================================*/
U_int calc_P2(U_int S)

{
int i;

U_int P;

P = S & g_mask[0];

for (i = 1; i < DIM; i++)
if( S & g_mask[i] ^ (P >> 1) & g_mask[i])

P |= g_mask[i];

return P;

}

/*===========================================================*/
/* calc_J */

/*===========================================================*/
U_int calc_J (U_int P)
{

int i;
U_int J;

J = DIM;
for (i = 1; i < DIM; i++)

if ((P >> i & 1) == (P & 1))
continue;

else
break;

if (i != DIM)
J -= i;

return J;
}
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/*===========================================================*/

/* calc_T */
/*===========================================================*/

U_int calc_T (U_int P)
{

if (P < 3)

return 0;
if (P % 2)

return (P - 1) ^ (P - 1) / 2;
return (P - 2) ^ (P - 2) / 2;

}

/*===========================================================*/

/* calc_tS_tT */
/*===========================================================*/

U_int calc_tS_tT(U_int xJ, U_int val)
{

U_int retval, temp1, temp2;

retval = val;

if (xJ % DIM != 0)

{
temp1 = val >> xJ % DIM;
temp2 = val << DIM - xJ % DIM;

retval = temp1 | temp2;
retval &= ((U_int)1 << DIM) - 1;

}

return retval;

}

/*===========================================================*/
/* calc_S */

/*===========================================================*/
U_int calc_S(U_int xJ, U_int val)
{

U_int retval, temp1, temp2;

retval = val;

if (xJ % DIM != 0)

{
temp1 = val << xJ % DIM;

temp2 = val >> DIM - xJ % DIM;
retval = temp1 | temp2;

retval &= ((U_int)1 << DIM) - 1;
}

return retval;
}
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/*===========================================================*/

/* H_decode */
/*===========================================================*/

/* For mapping from one dimension to DIM dimensions */

Point H_decode (Hcode H)

{
U_int mask = (U_int)1 << ORDER - 1,

A, W = 0, S, tS, T, tT, J, P = 0, xJ;
Point pt = {0};
int i = ORDER * DIM - DIM, j;

P = calc_P(i, H);

J = calc_J(P);
xJ = J - 1;

A = S = tS = P ^ P / 2;
T = calc_T(P);
tT = T;

/*--- distrib bits to coords ---*/

for (j = DIM - 1; P > 0; P >>=1, j--)
if (P & 1)

pt.hcode[j] |= mask;

for (i -= DIM, mask >>= 1; i >=0; i -= DIM, mask >>= 1)

{
P = calc_P(i, H);

S = P ^ P / 2;
tS = calc_tS_tT(xJ, S);
W ^= tT;

A = W ^ tS;

/*--- distrib bits to coords ---*/
for (j = DIM - 1; A > 0; A >>=1, j--)

if (A & 1)
pt.hcode[j] |= mask;

if (i > 0)
{

T = calc_T(P);
tT = calc_tS_tT(xJ, T);
J = calc_J(P);

xJ += J - 1;
}

}
return pt;

}
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/*===========================================================*/

/* H_encode */
/*===========================================================*/

/* For mapping from DIM dimensions to one dimension */

Hcode H_encode(Point pt)

{
U_int mask = (U_int)1 << ORDER - 1, element,

A, W = 0, S, tS, T, tT, J, P = 0, xJ;
Hcode h = {0};
int i = ORDER * DIM - DIM, j;

for (j = A = 0; j < DIM; j++)

if (pt.hcode[j] & mask)
A |= g_mask[j];

S = tS = A;

P = calc_P2(S);

/* add in DIM bits to hcode */
element = i / ORDER;

if (i % ORDER > ORDER - DIM)
{

h.hcode[element] |= P << i % ORDER;

h.hcode[element + 1] |= P >> ORDER - i % ORDER;
}

else
h.hcode[element] |= P << i - element * ORDER;

J = calc_J(P);
xJ = J - 1;

T = calc_T(P);
tT = T;

for (i -= DIM, mask >>= 1; i >=0; i -= DIM, mask >>= 1)
{

for (j = A = 0; j < DIM; j++)
if (pt.hcode[j] & mask)

A |= g_mask[j];
W ^= tT;
tS = A ^ W;

S = calc_S(xJ, tS);
P = calc_P2(S);

/* add in DIM bits to hcode */

element = i / ORDER;
if (i % ORDER > ORDER - DIM)
{

h.hcode[element] |= P << i % ORDER;
h.hcode[element + 1] |= P >> ORDER - i % ORDER;

}
else

h.hcode[element] |= P << i - element * ORDER;

if (i > 0)

{
T = calc_T(P);

tT = calc_tS_tT(xJ, T);
J = calc_J(P);
xJ += J - 1;

}
}

return h;
}
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