
Using State Diagrams for Hilbert Curve

Mappings ?

J K Lawder

School of Computer Science and Information Systems,

Birkbeck College, University of London,

Malet Street, London WC1E 7HX, United Kingdom

jkl@dcs.bbk.ac.uk

Abstract. The Hilbert Curve describes a method of mapping between

one and n dimensions. Such mappings are of interest in a number of ap-

plication domains including image processing and, more recently, in the

indexing of multi-dimensional data. Relatively little work, however, has

been devoted to techniques for mapping in more that 2 dimensions. This

paper presents a technique for constructing state diagrams to facilitate

mappings and is a specialization of an incomplete generic process de-

scribed by Bially. Although the storage requirements for state diagrams

increase exponentially with the number of dimensions, they are useful in

up to about 9 dimensions.

1 Introduction

The Hilbert Curve [13] is a space-�lling curve which can be used to de�ne a

one-one mapping between points in cartesian product space and points on a

line. Thus the points are ordered. This paper describes how to construct state

diagrams which facilitate a simple and practical way of determining the ordinal

position of a point or the coordinates of a point with a given position. The use

of state diagrams is practicable for spaces in up to about 10 dimensions, beyond

which memory requirements become prohibitive.

We base our approach to contructing state diagrams on a technique developed

by Bially [2]. Bially's technique is not speci�cally oriented towards the Hilbert

Curve, or any other. It comprises an incomplete set of rules requiring a manual

process of trial-and-error, which becomes increasingly arduous as the number of

dimensions rises. Our adaptation, however, enables the automatic construction

of state diagrams for Hilbert Curves in any number of dimensions, save for

practical limitations imposed by their storage requirements.

An alternative approach avoiding the problem of storage is proposed by

Butz [3] who calculates the coordinates of a point corresponding to an arbitrary

ordinal position on the curve. (With a little e�ort, it is possible to derive the

algorithm for the inverse of this mapping and a solution is given by Lawder [15,

16]). By `arbitrary', we mean as distinct from generating points sequentially from

? Technical Report no. JL2/00, August 15, 2000, updated on August 23, 2000

their sequence numbers starting at sequence number 0. An ability to generate

the coordinates of points sequentially is not adequate in some applications, such

as multi-dimensional indexing.

It is much easier, however, to employ a table driven approach to perform-

ing the mappings than it is to calculate them. This also works for arbitrary

points and in both directions of mapping. A simple approach is particularly

advantageous in facilitating the design and implementation of more compli-

cated algorithms, within which mappings or partial mappings are embedded.

An example of this is the querying algorithms employed where multi-dimensional

data is mapped to one dimension in the data storage application developed by

Lawder [15].

A number of other techniques have been proposed in the literature for per-

forming Hilbert Curve mappings. These have mostly been con�ned to the 2-

dimensional case, often only generating the coordinates of points in the sequence

that the Hilbert curve passes through them and do not always enable inverse

mappings to be determined.

Recursive procedures which map one-dimensional values to 2-dimensional

points sequentially for the purpose of drawing the curve but which neither pro-

vide mappings for arbitrary points nor provide inverse mappings are given by

Wirth [20], Goldschlager [10], Cole [4] and Witten and Wyvill [21]. Table driven

versions are given by Gri�ths [11, 12].

An iterative table driven version which does enable the mapping of arbitrary

one-dimensional values to 2-dimensional points is given by Fisher [9]. A table

driven version which additionally facilitates the inverse mapping, from arbitrary

2-dimensional points to one-dimensional values, is given by Cole [5, 6].

A mathematical formula for mapping from one-dimensional values to 2-

dimensional points is de�ned by Sagan [19], who also gives a BASIC program

which implements it for the fourth order Hilbert curve. It appears that a di�er-

ent formula would be required for each number of dimensions through which the

Hilbert curve passes.

Kamata et al [14] apply the Hilbert curve to the analysis of images. They refer

to a technique for sequentially mapping one-dimensional values to coordinates of

n-dimensional points which appears in Japanese in an earlier publication by the

same authors. Where arbitrary mappings are required they utilize the method

described by Butz.

Liu and Schrack [17] provide formulae for mapping from coordinates of 2-

dimensional points to one-dimensional values and the inverse which they found

in experimentation to be signi�cantly more computationally e�cient than the

algorithms given by Fisher in [9].

The remainder of this paper is divided into three sections and a conclusion.

In section 2 we describe the concept of the Hilbert Curve. In section 3 we give

an example of a state diagram , together with the algorithm which uses it in

mapping calculations. Section 4 details the state diagram construction process

for the Hilbert Curve.

2

2 Hilbert's Space-�lling Curve

An understanding of the way in which a Hilbert Curve is drawn is rapidly gained

from Fig. 1 showing the �rst 3 steps of an in�nite process for the 2-dimensional

case. A square is initially divided into 4 sub-squares which are then ordered such

that any pair of consecutive sub-squares share a common edge. The ordering is

illustrated by drawing a line through their centre-points and this line is called

a �rst-order curve. Figure 1(b) shows the next step in which each sub-square

created in the �rst step is then divided into 4 sub-squares. The sub-squares

within the �rst and last squares of the �rst step are ordered di�erently to ensure

the adjacency property is preserved. Di�erent orderings of sets of 4 sub-squares

give rise to di�erent orientations of �rst order curves and are regarded as being

distinct states in a state diagram.

1 2 3 4

2 3

41
1 2

34

5

6 7

8 9

11

12

13

1615

14

10

1 2 3

1

2 3

 4 64

16

 (a) (b) (c)

Fig. 1. Approximations of the Hilbert Curve in 2 Dimensions

In practical applications, the process can be terminated after k steps to pro-

duce an approximation of a space-�lling curve of order k. This curve passes

through 2kn sub-squares, the centre-points of which are regarded as points in

a space of �nite granularity. The transformation of a curve of order k � 1 to a

curve of order k can be viewed as replacing each point on the former with a �rst

order curve.

The concept of the Hilbert Curve can be generalized into higher numbers

of dimensions and an example of a second order curve in 3 dimensions is given

in Figure 2. We see in both the 2 and 3 dimensional cases that the Hilbert

Curve manifests an interesting and useful property in which consecutively or-

dered points are always adjacent to each other in space.

In the remainder of this paper, we refer to the sequence number of a point

on a Hilbert Curve as a derived-key.

3

Fig. 2. Approximations of the Hilbert Curve in 3 Dimensions

4

state derived-key

no. 000 001 010 011 100 101 110 111

0 000 001 011 010 110 111 101 100

1 2 2 3 3 5 5 4

1 000 010 110 100 101 111 011 001

2 0 0 8 8 7 7 6

2 000 100 101 001 011 111 110 010

0 1 1 9 9 11 11 10

3 011 010 000 001 101 100 110 111

11 6 6 0 0 9 9 8

4 101 111 011 001 000 010 110 100

9 7 7 11 11 0 0 5

5 110 010 011 111 101 001 000 100

10 8 8 6 6 4 4 0

6 011 111 110 010 000 100 101 001

3 11 11 5 5 1 1 7

7 101 100 110 111 011 010 000 001

4 9 9 10 10 6 6 1

8 110 100 000 010 011 001 101 111

5 10 10 1 1 3 3 9

9 101 001 000 100 110 010 011 111

7 4 4 2 2 8 8 3

10 110 111 101 100 000 001 011 010

8 5 5 7 7 2 2 11

11 011 001 101 111 110 100 000 010

6 3 3 4 4 10 10 2

Table 1. Hilbert Curve State Diagram: for Mapping from One Dimension

(derived-keys) to 3-dimensional Points

3 An Algorithm Using State Diagrams

In what follows, we use the term n-point for the concatenation of the (single bit)

coordinates of a point on the �rst order curve.

An example of a graphical representation of a state diagram for the Hilbert

Curve in 3 dimensions is given in Figure 3. This state diagram is then expressed

in tablular form in Tables 1 and 2.

Table 1 contains a row for each state and is used in the mapping from one to n

dimensions. Within a row, points, expressed as n-points, are ordered by sequence

number, or derived-key value. Associated with each n-point is a (decimal) `next-

state' number designationg which state it transforms to in a curve of the next

higher order. Table 2 is similar but is used for the inverse mapping and so derived-

keys are ordered by their corresponding n-point values in each state. These tables

may be stored as arrays in a software implementation of the mapping algorithms.

The manner in which the derived-key, D, of a point, P , is calculated using

a state diagram is given in Algorithm 1, where the most signi�cant bit of a

5

-1 0 0
 0 0 1
 0-1 0

 0-1 0
-1 0 0
 0 0 1

 0 0-1

-1 0 0

 0 1 0
-1 0 0

 0 0-1

 0 0-1

 0 1 0

 0-1 0

 0 0-1

 1 0 0

-1 0 0
 0 1 0

 0 0 1
 0-1 0
-1 0 0 1 0 0

 0 0-1
 0-1 0

 0-1 0
 1 0 0
 0 0-1

 1 0 0

 0 0 1

 0 1 0

 0 1 0

 0 0 1

 1 0 0

 0 0 1

 0 1 0
 1 0 0

(000)011

11
0(
01
0)

001(001)(0
00
)0
00

01
0(
00
1)

000(000)
(001)100

(11
0) 0

11

111

(1
01
)

0
0
1
(
1
1
1
)

(
1
0
1
)
1
0
0

(
1
0
1
)
1
1
1

0
1
0
(
1
1
1
)

(
1
1
0
)
1
1
0

111(001)

110(010)

(
0
0
0
)
0
0
0

(010)101

000(110)
(111)010
100(101)

010(111)

0
1
1
(
1
1
0
)

(
1
0
1
)

0
0
1

(111
)001

000(
110)

010(
101)

0
0
1
(
1
1
1
)

(010)000
011(000)

(001)010

(0
10
)1
01

(0
01
)0
01

01
1(
00
0)

(1
10
)1
10

(1
01
)1
00

11
1(
11
1) (110)101

111(111)

(101)001 00
0(
01
0)

110(000)
(001)010

101(010)(000)110

111(001)
01
1(
01
0)

11
1(
00
1)

110(010)(000)101

100(001)
101(000)

(001)001

100(111)

0
1
0
(
1
0
1
)

1
1
0
(
1
1
0
)

011(110) 11
1

(101)

010

(1
01
)0
01

1
0
0
(
1
1
1
)

(111)1
00

(0
00
)1
01

(010)000
(0
00
)1
10

10
0(
00
1)

(010)011

(1
11
)

(1
10
)0
00

(
1
1
0
)
1
0
1

0

1 2

116

3

894

7 10

5

111(101)011(010)

101(110)

A pair of figures at the base of an arrow desingates an n-point - derived-key pair.
The derived-key is in parenthesis.

This arrow is read as,
"the next state for the n-point
010, with sequence number
101 within state number 4,
is state number 0"

from (Y) X1 to
state state

0 011 010 3
100 110

1 011 100 8
100 101

2 011 001 9
100 011

3 011 001 0
100 101

from (Y) X1 to
state state

4 011 001 11
100 000

5 011 111 6
100 101

6 011 010 5
100 000

7 011 111 10
100 011

from (Y) X1 to
state state

8 011 010 1
100 011

9 011 100 2
100 110

10 011 100 7
100 000

11 011 111 4
100 110

Fig. 3. A State Diagram for the Hilbert Curve in 3 Dimensions with supplementary

table listing links not shown (for clarity) in the illustration

6

state n-point

no. 000 001 010 011 100 101 110 111

0 000 001 011 010 111 110 100 101

1 2 3 2 4 5 3 5

1 000 111 001 110 011 100 010 101

2 6 0 7 8 8 0 7

2 000 011 111 100 001 010 110 101

0 9 10 9 1 1 11 11

3 010 011 001 000 101 100 110 111

6 0 6 11 9 0 9 8

4 100 011 101 010 111 000 110 001

11 11 0 7 5 9 0 7

5 110 101 001 010 111 100 000 011

4 4 8 8 0 6 10 6

6 100 111 011 000 101 110 010 001

5 7 5 3 1 1 11 11

7 110 111 101 100 001 000 010 011

6 1 6 10 9 4 9 10

8 010 101 011 100 001 110 000 111

10 3 1 1 10 3 5 9

9 010 001 101 110 011 000 100 111

4 4 8 8 2 7 2 3

10 100 101 111 110 011 010 000 001

7 2 11 2 7 5 8 5

11 110 001 111 000 101 010 100 011

10 3 2 6 10 3 4 4

Table 2. Hilbert Curve State Diagram: for Mapping from 3-dimensional Points

to One Dimension (derived-keys)

value is designated `position 1'. The inverse mapping, from a derived-key to the

coordinates of a point, is carried out in a similar manner.

4 Constructing a State Diagram for the Hilbert Curve

Bially's method for creating state diagrams is carried out in 2 stages. The �rst

stage entails following a set of rules which results in the production of a state

diagram generator table. This table principally describes how a particular �rst

order curve transforms into a second order curve. The table is then used as a

tool for creating the state diagram itself.

An example of a generator table for the Hilbert Curve in 3 dimensions is

given in Table 3.

In this section we specialize and extend Bially's rules to enable the construc-

tion of generator tables for Hilbert Curves and then give an algorithm which

uses the table to construct the state diagram itself.

7

Algorithm 1 Finding the derived-key of a Point using the State Diagram

1: current level (1

2: current state (0

3: D (the empty bit-string

4: repeat

5: p(one bit in position current level taken from each coordinate in P , concate-

nated into an n-point

6: d(the n-bit derived-key taken from the current state corresponding to p

7: append d to D

8: if current level < the order of the curve then

9: current state (the next state for the ordered pair h p; d i within the cur-

rent state

10: end if

11: current level (current level +1

12: until current level > the order of the curve

Our rules for generating state diagrams enable us to perform a particular

mapping for each value of n. We believe that these mappings describe valid

Hilbert curves and have satis�ed ourselves empirically that they produce correct

results. They constitute our de�nitions of the Hilbert curves used throughout

this paper. However, we leave a formal proof of the correctness of our techniques

as a matter for future work.

4.1 Method of Constructing the Generator Table

A generator table contains 2n rows, one for each point on a �rst order curve,

and corresponds to a particular state in the diagram; we label it `state 0' or S0.

The columns are labeled Y , X1, X2, �Y and T (Y). In describing the rules for

populating the table, we provide some brief comments on the semantics of the

various columns, as these are generally absent from Bially's paper.

We noted above that Bially's procedure is generic and therefore is applicable

where the coordinates and derived-keys are expressed as integers of any radix.

An important characteristic of our specialization of the rules for the Hilbert

Curve is that we express integers in a binary radix. Thus all numbers in the �rst

three columns are composed of the digits 0 and 1 whereas in Bially's original

paper they are composed of digits in the range [0; : : : ; r�1], where r is the radix

used. We do not refer to rules which are followed automatically as a consequence

of using a binary radix.

Column Y Contains the sequence numbers of points lying on a �rst order

curve arranged in ascending order. For the Hilbert Curve they lie in the range

[0; : : : ; 2n � 1].

Column X1 Contains sets of coordinates of points on a �rst order curve expressed

as n-points. Points in successive rows must be adjacent to each other in space

and so successive n-points di�er in one bit only.

8

Y X1 X2 �Y T (Y)

000 000 000 001 0 0 1

001 1 0 0

0 1 0

001 001 000 010 0 1 0

010 0 0 1

1 0 0

010 011 000 010 0 1 0

010 0 0 1

1 0 0

011 010 011 100 1 0 0

111 0 -1 0

0 0 -1

100 110 011 100 1 0 0

111 0 -1 0

0 0 -1

101 111 110 010 0 -1 0

100 0 0 -1

1 0 0

110 101 110 010 0 -1 0

100 0 0 -1

1 0 0

111 100 101 001 0 0 -1

100 1 0 0

0 -1 0

Table 3. State Diagram Generator Table for the Hilbert Curve in 3 Dimensions

For the Hilbert Curve, this requirement is satis�ed by setting column X1

values equal to the `Gray-codes' of their corresponding column Y values and so

each row's value is simply calculated as Y � Y=2. The Gray-code sequence is

discussed by Reingold et al in [18]. The usefulness of Gray-codes as column X1

values was noted by Faloutsos in his technical report [8].

We note that the �rst column X1 value equals 0 : : : 0 and the last equals

10 : : : 0 and that these two points are adjacent since they di�er in one bit only.

Column X2 Each row contains a pair of n-points corresponding to the �rst and

last points on the �rst order curve to which the point in column X1 transforms

in the construction of a second order curve.

The �rst value in the �rst row equals the �rst column X1 entry and the

second value in the last row equals the last column X1 entry. Two values in the

same row di�er in one bit and adjacent values in di�erent rows di�er in one bit

only; the same bit in which their corresponding entries in column X1 di�er, but

in the opposite sence.

In 2 dimensions, the following manually generated sequence, for example,

satis�es these constraints:

9

[00; 01; 00; 10; 00; 10; 11; 10]

as does the following sequence in 3 dimensions:

[000; 001; 000; 010; 000; 010; 011; 111; 011; 111; 110; 100; 110; 100; 101; 100]:

Generating these sequences manually becomes increasingly di�cult, however,

as the number of dimensions increases but a pattern emerges enabling them to

be expressed algorithmically, for any value of n.

We derive a column X2 sequence for a curve of n dimensions from the

sequence for n � 1 dimensions, initializing the sequence for one dimension as

[0; 1; 0; 1]. The sequence for n dimensions is then determined as follows;

1. Initialize the sequence for n dimensions equal to the sequence for n � 1

dimensions.

2. Set the value of the last member of the sequence (for n�1 dimensions) equal

to the value of the penultimate member.

3. Pre�x the last member of the sequence with a bit of value 1 and all other

members each with a bit of value 0.

4. Double the size of the sequence by reecting it such that the last member

equals the �rst and so on.

5. Invert the values of the most signi�cant bits of all of the members in the

upper half of the sequence.

The rules ensure that the last point of a �rst order curve within a second

order curve is adjacent to the �rst point of the next �rst order curve.

Column �Y This column is implied only in Bially's paper and his rules need no

particular adaptation to suit the Hilbert Curve. Each row contains a number in

which each digit is the magnitude of the di�erence between the corresponding

digits in the same row's entries in column X2. For the Hilbert Curve only one

bit in any �Y value is non-zero.

The entry in column �Y for any row indicates in which dimension the start

and end points of the �rst order curve at the second order level have di�erent

coordinate values. A corresponding value for the entries in the �rst and last rows

in column X1 would be equal to the last entry in column X1, since the �rst entry

contains zero-valued bits only.

Column T (Y) Contains transformation matrices which de�ne how the �rst order

curves which are partially de�ned in column X2 di�er from the �rst order curve

de�ned by columns Y and X1, ie state S0.

A matrix is initially a permutation matrix which, applied to its column �Y

value produces the last column X1 value. This is ambiguous but resolved simply

for the Hilbert Curve as follows;

10

1. Set the �rst row of a matrix equal to the matrix's column �Y value.

2. for each of the remaining rows, set row i equal to the value in row i � 1

circular right-shifted one bit position.

Permutation matrices for all curves are then adapted to become transforma-

tion matrices as follows; if the i-th digit of the �rst of its row's pair of X2 entries

is non-zero then the non-zero element of the i-th column within the matrix is

set to �1.

Generally, a transformation matrix implies some state Si, Si 6= S0, by en-

abling any point Pi in state Si to be transformed into the equivalent point P0 in

state S0 which has the same distance from the beginning of the curve in state S0

as does point Pi in state Si. The distance, ie sequence number, of point Pi from

the start of the curve in state Si is then determined by looking up the column Y

value for point P0 in state S0.

It follows that applying a row's matrix to its �rst entry in column X2 should

transform it to the �rst entry in column X1 and applying it to its second entry

should transform it to the last entry in column X1.

4.2 Using the Generator Table to Construct a State Diagram

The method by which a state diagram generator table is used to produce a state

diagram is not detailed in Bially's paper although it is addressed from a math-

ematical perspective in his thesis [1]. In this section we present an algorithm

for state diagram generation in terms which more readily enable it to be im-

plemented as a computer program. Our algorithm applies speci�cally where the

generator table has been constructed in the manner described in the previous

section.

The generator table is used to produce a temporary list of all of the states

which together de�ne a state diagram. Once created, not all of the information

within it is needed in the �nal state diagram. The list is therefore traversed to

extract relevant information only.

The �rst state placed in the temporary list is the state encapsulated by the

generator table itself; by the mapping de�ned by columns Y and X1 and by the

next-states for each point as de�ned by transformation matrices in column T (Y).

There is no relationship between consecutive states within the list of states.

They are simply placed in it in the order that they are encountered in the

calculation process.

A member of the temporary list de�nes a state and is a record containing

the following information:

1. A State Number identifying the state.

2. A set of 2n triples, one for each point on a �rst order curve. Each triple

is of the form: hY i
u ; X1iu; tm

i
u i. Y

i
u is a sequence number, in the range

[0; : : : ; 2n � 1], of a point in state number u, ie Su. X1iu is the n-point

representation of the coordinates of the point, in the same range. tmi
u is the

number of the next-state, ie �rst order curve, to which the point transforms

11

to in a second order curve. Each distinct tm
i
u number corresponds to a

transformation matrix, examples of which are found in column T (Y) of the

generator table, de�ning a distinct state.
3. A Transformation Matrix encapsulating how the state di�ers from the �rst

state in the list.
4. A pointer to the next member in the list.

The procedure for building the temporary list of states is given in Algo-

rithm 2.

A state diagram, derived from the temporary list of states, can be imple-

mented as an array of states with one element for each state in the list. A state

is identi�ed by its number, which can be implied by its position within the array

of states, and de�ned by its list of triples. Each list of triples can also be stored

as an array. The elements of these arrays may be expressed compactly as pairs

since one of the attributes, Y i
u or X1iu, of a triple can be implied by its position

in the array, depending on how the triples are sorted.

Thus two state diagrams can be produced from the state list. One is required

for performing a mapping from one dimension to n dimensions. The triples within

it are sorted by Y
i
u values, which may be implied.. The other is required for

performing a mapping from n dimensions to one dimension. The triples are

sorted by X1iu values, which may be implied.

Transformation Matrix Operations

Two di�erent transformationmatrix calculations are employed in Algorithm 2;

in line numbers 24 and 27. We conclude this section with a description of why

and how these calculations are performed.

We note from the previous section that transformation matrices in the gen-

erator table (column T (Y)) can be encapsulated by two values, namely the �rst

of a row's pair of column X2 values and the same row's column �Y value. This

concept also applies to transformation matrices which do not appear in the gener-

ator table and this simpli�es calculations using matrices. Thus a transformation

matrix for state Su is represented by a pair; hX2u; �Yu i.

We also note that a �Y value for some state Su encapsulates how much right

circular shifting needs to be applied to each row in the identity matrix to create

the matrix for state Su. Thus �Yu can be stored as an integer representing the

right hand side operand of the shift operation. For example, 10 : : : 0 is stored as

0, 010 : : :0 is stored as 1, 0010 : : :0 is stored as 2, and so on.

The calculation in line number 24 �nds the n-point j (equal to X1
p
0) in state

S0 which has the same sequence number (ie p) as the n-point i in state Su. Once

p is found, i assigned to X1pu.

The calculation of j is carried out in the following manner:

1. j (i�X2u
2. j (j left circular shift �Yu bits

The calculation in line number 27 determines the pair hX2w; �Yw i encapsu-

lating the transformation matrix for state Sw, which is the next-state for X1pu

12

Algorithm 2 Algorithm to Create a List of States

fUsing the generator table, initialize the �rst member, ie state, of the listg

1: current state (0

2: next state num (1

3: for all i such that 0 � i < 2n do

4: Y
i

0 (i

5: X1i0 (X1 value from row i of the generator table

6: end for

fThe tmi

0 attributes of the triples are initially unde�nedg

7: current state transformation matrix (the identity matrix

fInitialize the tmi

0 attributes, ie next-state numbers, of the triples in state 0g

8: for all i such that 0 � i < 2n do

9: if no state exists in the state list whose transformation matrix equals that found

in row i of the generator table then

10: append a new state to the list

11: new state's number (next state num

12: next state num (next state num + 1

13: new state's transformation matrix (matrix from row i of the generator table

14: tm
i

0 (new state's number

15: else

16: tm
i

0 (the number of the state found in the list

17: end if

18: end for

fState 0 is now fully de�ned. A new state has been added to the list for each distinct

transformation matrix, other than the identity matrix, found in column T (Y) of

the generator tableg

fInitialize the attributes of the triples in all of the states remaining in the list,

appending any new states required in the processg

19: for all states, u, in the list (excluding state 0) do

20: for all i such that 0 � i < 2n do

21: Y
i

u (i

22: end for

23: for all i such that 0 � i < 2n do

24: j (i � the transformation matrix for state u

25: p(the row in state 0 such that X1p
0
= j

26: X1pu <= i fie assign i to the X1 value in row p of the current state ug

27: TM ((transformation matrix corresponding to tmp

0
) � (transformation ma-

trix corresponding to state u)

fNB TM is a transformation matrix de�ning a state, not a state numberg

28: if no state exists in the state list whose transformation matrix equals TM

then

29: Add a new state to the list

30: State Number of the new state (next unused number

31: Transformation matrix of the new state (TM

32: end if

33: tm
p

u (the State Number of the state whose transformation matrix equals

TM

34: end for

35: end for

13

in state Su. Sq , encapsulated by the pair hX2q; �Yq i, is the next-state corre-

sponding to tm
p
0. The calculation is carried out as follows:

1. �Yw ((�Yq + �Yu) mod n

2. temp(X2q right circular shift �Yu
3. X2w (temp exculsive-or X2u

5 Conclusions

The existence of state diagrams for the Hilbert Curve facilitates a convenient

and simple means of mapping between one and n dimensions in which proximity

between points in one dimensions are preserved in n dimensions and to some

degree the inverse is also true.

The storage requirements for state diagrams increase exponentially with the

number of dimensions, both in terms of the number of states and in terms of the

size of a single state. Our rules result in a number of states given by

n2n�1

According to Bially, this is the minimum possible. The size of a single state

is determined by the number of derived-key { next-state pairs in Table 1, for

example, and is given by the expression 2n.

The complexity of the mapping algorithm given in Algorithm 1 can be seen

to be O(kn) and this is the same as for the algorithm given by Butz which

relies on calculation alone, although the latter includes a higher constant fac-

tor. In experiments, we found that on currently available hardware, mappings

can be performed more quickly using state diagrams although their advantage

diminishes with increasing values of n.

The mapping technique described by Butz is similar to the state diagram

approach at the fundamental level and insights gained in developing rules for

state diagram generation enabled us to introduce some useful improvements to

the detail of Butz' algorithm. These are described in [15, 16].

A further bene�t of the state diagram approach is that variations to the

detail of the rules governing the generator tables may be found and the resulting

state diagrams therefore de�ne slightly di�erent interpretations of the Hilbert

Curve. Exploration of this is largely a matter for further research.

References

1. Theodore Bially. A Class of Dimension Changing Mappings and its Application to

Bandwidth Compression. PhD thesis, Polytechnic Institute of Brooklyn, 1967.
2. Theodore Bially. Space-�lling curves: Their generation and their application to

bandwidth reduction. IEEE Transactions on Information Theory, IT-15(6):658{

664, Nov 1969.

3. Arthur R. Butz. Alternative algorithm for hilbert's space-�lling curve. IEEE

Transactions on Computers, 20:424{426, April 1971.

14

4. A. J. Cole. A note on space �lling curves. Software { Practice and Experience,

13(12):1181{1189, December 1983.

5. A.J. Cole. Direct transformations between sets of integers and hilbert polygons.

International Journal of Computer Mathematics, 20:115{122, 1986.

6. A.J. Cole. Compaction techniques for raster scan graphics using space-�lling

curves. The Computer Journal, 30(1):87{92, 1987.

7. Christos Faloutsos and Shari Roseman. Fractals for secondary key retrieval. In

Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-

ciples of Database Systems, March 29-31, 1989, Philadelphia, Pennsylvania, pages

247{252. ACM Press, 1989.

8. Christos Faloutsos and Shari Roseman. Fractals for secondary key retrieval (an

extended version of [7]). Technical Report UMIACS-TR-89-47, University of Mary-

land, 1989. http://www.cs.cmu.edu/ christos/cpub.html.

9. A. J. Fisher. A new algorithm for generating Hilbert curves. Software { Practice

and Experience, 16(1):5{12, January 1986.

10. Leslie M. Goldschlager. Short algorithms for space-�lling curves. Software { Prac-

tice and Experience, 11(1):99, January 1981. Short Communication.

11. J.G. Gri�ths. Table-driven algorithms for generating space-�lling curves. Com-

puter Aided Design, 17(1):37{41, Jan/Feb 1985.

12. J.G. Gri�ths. An algorithm for displaying a class of space-�lling curves. Software

Practice and Experience, 16(5):403{411, May 1986.

13. David Hilbert. Ueber stetige abbildung einer linie auf ein achenstuck. Mathema-

tische Annalen, 38:459{460, 1891.

14. S. Kamata, E. Kawaguchi, and M. Niimi. An interactive analysis method for

multi-dimensional images using a hilbert curve. Systems and Computers in Japan,

26(3):83{92, 1995.

15. Jonathan Lawder. The Application of Space-Filling Curves to the Storage and

Retrieval of Multi-dimensional Data. PhD thesis, Birkbeck College, University of

London, 2000.

16. Jonathan Lawder. Calculation of mappings between one and n-dimensional values

using the hilbert space-�lling curve. Technical Report JL1/00, Birkbeck College,

University of London, 2000.

17. Xian Liu and G�unther Schrack. Encoding and decoding the Hilbert order. Software

{ Practice and Experience, 26(12):1335{1346, December 1996.

18. E.M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: Theory and

Practice. Prentice Hall, 1977.

19. Hans Sagan. Space-Filling Curves. Springer-Verlag, 1994.

20. N. Wirth. Algorithms + data structures = programs. Prentice Hall, 1976.

21. Ian H. Witten and Brian Wyvill. On the generation and use of space-�lling curves.

Software { Practice and Experience, 13(6):519{525, June 1983.

15

