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Abstract

Mapping to one-dimensional values and then using a one-

dimensional indexing method has been proposed as a way

of indexing multi-dimensional data. Most previous related

work uses the Z-Order Curve but more recently the Hilbert

Curve has been considered since it has superior clustering

properties. Any approach, however, can only be of practical

value if there are e�ective methods for executing range and

partial match queries. This paper describes such a method

for the Hilbert Curve.

1 Introduction

Indexing of multi-dimensional data has been the focus

of a considerable amount of research e�ort over many

years but no generally agreed paradigm has emerged to

compare with the impact of the B-Tree, for example,

on the indexing of one-dimensional data. An extensive

review appears in [5]. At the same time, the need for

e�cient methods is ever more important in an environ-

ment where databases become larger and more complex

in their structures and aspirations for extracting valu-

able information become more sophisticated.

Mapping multi-dimensional data to one dimension,

enabling simple and well-understood one-dimensional

access methods to be exploited, has been suggested as a

solution in the literature, for example by Faloutsos [3, 4].

One way of e�ecting such a mapping is to utilize

space-�lling curves which pass through every point in a

space once so giving a one-one correspondence between

the coordinates of the points and the one-dimensional

sequence numbers of the points on the curve.

For the most part, interest in space-�lling curves

has been con�ned to the Z-Order Curve, for example

in the work of Orenstein and Manola [15] and more

recently of Ramsak et al [16]. The possibility of

using other curves, such as the Hilbert Curve, has also

been suggested but most previous work has been of a

theoretical nature [7, 8, 14]. These studies show that
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the Hilbert Curve manifests superior data clustering

properties when compared with other curves.

In order for the application of the Hilbert Curve in

the indexing of multi-dimensional data to be viable,

however, the existence of a technique for querying data

is essential. Techniques which work for the Z-Order

Curve, for example that of Tropf and Herzog [17],

cannot simply be applied to the Hilbert Curve. This

paper reports on a technique which has successfully been

developed as part of the design and implementation

of the �rst fully functioning data storage and retrieval

application utilizing the Hilbert Curve by Lawder [10].

In sections 2, 3 and 4 we briey describe the Hilbert

Curve, how mappings between one and n dimensions are

calculated and how we utilize the curve in a data storage

application. In section 5 we describe our strategy for

querying data and its implementation.

2 The Hilbert Curve

Space-�lling curves were a topic of interest for leading

pure mathematicians in the late 19th century and the

�rst graphical representation of one was given by David

Hilbert in 1891 [6].

An understanding of the way in which a Hilbert Curve

is drawn is gained from Figs. 1{3 showing the �rst 3

steps of an in�nite process for the 2-dimensional case.

In Fig. 1(a) a square is initially divided into 4 quadrants

and a �rst-order curve is drawn through their centre

points. The quadrants are ordered such that any two

which are adjacent in the ordering share a common

edge. In the next step, shown in Fig. 1(b), each of

the quadrants of Fig. 1(a) is divided into 4 and, in all, 4

`scaled-down' �rst order curves are drawn and connected

together. Note that the �rst and last �rst order curves

have di�erent orientations to the one drawn in the

�rst step so that the adjacency property of consecutive

squares is maintained. Fig. 3 shows the third step.

In practical applications the process is terminated

after k steps to produce an approximation of a space-

�lling curve of order k. This passes through 22k

quadrants, the centre points of which are regarded as
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Figure 1: Approximations of the Hilbert Curve

points in a space of �nite granularity. Generalizing

the concept into n dimensions, squares and quadrants

are replaced by hyper-rectangles, successive hyper-

rectangles share common hyper-faces and a curve passes

through 2nk points. In the working software developed

by Lawder [10], 32nd order curves are used, enabling

32-bit coordinate values, and n takes a value of up to

16, but this could quite easily be increased.

An important property of the Hilbert Curve is that

consecutively ordered points are adjacent in space.

3 Hilbert Curve Mapping

The recursive way in which space is partitioned during

the Hilbert Curve construction process can be expressed

in a tree structure as in Fig. 2. This conceptual view

aids an understanding of the mapping process. Each

node corresponds to a �rst order curve and a collection

of nodes at any tree level, k, describes a curve of order

k, where the root resides at level 1. Thus the root node

corresponds to the �rst order curve of Fig. 1(a) and the

leaf nodes correspond to the set of �rst order curves

comprising the third order curve of Fig. 3.

Alternatively, a node is viewed as a sub-space enclos-

ing 2n nested sub-spaces, except that a leaf node en-

closes 2n points.

We call a binary sequence number of a quadrant

within a node (equivalent to a point on a �rst order

curve) a derived-key, or a quadrant number, and the

concatenated (single-bit) coordinates of a point on a

�rst order curve an n-point. We also call the sequence

number of a point on a curve of any order k a derived-

key. This value contains nk bits; the same as the sum

of the bits in all of the coordinates of a point.

We illustrate how the mapping from the coordinates

of a point to its derived-key takes place with the

example of point P shown on Fig. 3. Its coordinates are

h 110; 100 i. Initially the derived-key of P is unknown

and designated by the bit string `??????'.

Step 1: Concatenate the top bits of the coordinates of

P to form the n-point 11. This locatesP in quadrant

number 10 in the tree's root node. This quadrant is

emphasized in bold in Fig. 2. The derived-key of P

is now `10????'.
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Figure 2: A Tree Representation of the Third Order

Hilbert Curve in 2 Dimensions
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Step 2: Concatenate the next lower (ie middle) bits of

the coordinates of P to form the n-point 10. Locate

this n-point within the tree level 2 node pointed to

by the quadrant identi�ed in the root, in step 1. This

places the point in the quadrant number is 11. The

derived-key of P is now `1011??'.

Step 3: Concatenate the bottom bits of the occordi-

nates of P to form the n-point 00. Locate this n-

point within the tree level 3 node pointed to by the

quadrant identi�ed in the previous step. This places

the point in the quadrant number 10. The derived-

key of P is now `101110'.

The inverse mapping, from a derived-key to the

coordinates of a point, is carried out in a similar manner.

It is not practicable to store the tree representation of

the Hilbert Curve in memory for calculating mappings

for any useful value of order of curve. We note,

however, that a tree contains a �nite number of types

of node. Di�erent types of node (equivalent to di�erent

orientations of �rst order curve) can be regarded as

being di�erent states enabling the tree structure to be

expressed more compactly as a state diagram.

A method for constructing Hilbert Curve state di-

agrams is described by Lawder [13] who adapts and

extends a generic technique originally proposed by

Bially [1]. In higher than about 9 dimensions, state dia-

grams also become too large to accommodate in memory

and mappings need to be calculated instead, for exam-

ple in the manner detailed by Butz [2] and developed

by Lawder [12].

4 Application of the Hilbert Curve

We now describe how the Hilbert Curve is used in a

practical application. We refer to actual records placed

in a data �le as datum-points.

Conceptually, the curve is cut into contiguous sections

each corresponding to a page of storage in the data �le.

Each page has a �xed data capacity but the length of

a curve section varies according to the local density of

datum-points; thus each section or page holds roughly

the same number of datum-points. Pages are indexed by

derived-keys of datum-points, which we call page-keys.

Generally, a page's page-key is the lowest derived-key

of any datum-point lying on the page. The �rst page is

an exception and is indexed by the derived-key of value

zero whether or not it corresponds to a datum-point.

An example is shown in Fig. 3 where the page capacity

is 4 datum-points.

Pages are thus logically ordered by their page-keys

which are placed in a one-dimensional index together

with their corresponding page addresses. No page

contains a datum-point whose derived-key is greater

than that of any datum-point on a successor page.

A

P3

P4

P2

P1

C

D

E

P

query region
B

A, B, C & D are ‘page-keys’, E is the ‘next-match’ to B for the query

Figure 3: Partitioning into Pages

We note that the approach described here partitions

data rather than the space in which it lies. It adapts

easily on update, ie insertion and deletion of datum-

points. For example, if a page becomes full, half of

the datum-points whose derived-keys are greater or less

than those of the other half can be moved to a new page

or some other similarly de�ned portion may be moved

to a logically adjacent page. In other words, precisely

the same approach used in the one-dimensional B-Tree

can be used for multi-dimensional data.

5 Query Execution

5.1 The Querying Strategy

Our application facilitates the retrieval of datum-

points from hyper-rectangular query regions de�ned

by lower and upper bound coordinates, h l1; l2; : : : ln i
and hu1; u2; : : : un i with mini � li � ui � maxi.

A query region intersects one or more curve sections

each corresponding to a page. The Hilbert Curve

may enter, leave and re-enter a query region a number

of times. Our strategy identi�es for retrieval and

searching only those pages which intersect the query

region, e.g. given the query region shown shaded in

Fig. 3, only pages P1 and P4 are identi�ed. Intervening

curve sections corresponding to pages P2 and P3 are

e�ectively `stepped over'.

Pages to be searched are identi�ed lazily, in ascending

page-key order. This is e�ected by a function called

calculate next match(). The �rst time it is called the

lowest derived-key of any point lying within the query

region is identi�ed. The index is searched and the page

which contains this point, if it is a datum-point, is

identi�ed, retrieved and searched for datum-points lying

within the query region.

The second time that calculate next match() is called,
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it attempts to �nd the lowest derived-key of a point

lying within the query region which is equal to or

greater than the page-key of the successor page to the

one just searched. We call this derived-key the next-

match. If a next-match is found the page which may

contain its corresponding datum-point is also identi�ed,

retrieved and searched. The process continues in this

manner until no further next-matches can be found.

The number of times which calculate next match() is

called always equals the number of pages intersecting

with the query region plus one.

In contrast to the Z-Order Curve, knowledge of

the derived-key values of the lower and upper bound

points of the query region does not assist in the query

process. This necessitates a di�erent approach to query

execution where the Hilbert Curve is used for mapping

between one and n dimensions.

5.2 The Querying Algorithm

We illustrate the operation of calculate next match()

with an example, in terms of descending the tree repre-

sentation of the Hilbert Curve described in section 3.

Figure 3 shows an example query region as a shaded

area. The quadrants at all levels within the tree

representation of the Hilbert Curve intersecting with

this query region are also shown shaded in Fig. 2. We

assume that calculate next match() has already been

called once and that the �rst page intersecting the query

region, P1, has already been identi�ed, retrieved and

searched. On calling calculate next match() a second

time, we are searching for the next-match which is

equal to or minimally greater than the page-key of the

successor page to the one just searched. This page-key

is the derived-key of point B shown in Figs. 2 and 3 and

we call it the current-key. Its value is 001110. Note that

the next-match must be a derived-key corresponding to

a point lying within the query region. In this example,

the next-match is 110110, the derived-key of point E.

The search begins at the root of the tree, descends

and terminates at the member of a leaf which is the

next-match. Back-tracking takes place in our example

but it is not always required. At each level we

carry out a binary search on the derived-keys of the

quadrants within a node. A binary search �nds a

quadrant intersecting with the query region and whose

derived-key, ie number, is as small as possible while

also containing points whose derived-keys are equal

to or greater than the current-key. That the next-

match should be as small as possible accounts for the

sorting of quadrants within a node by derived-key rather

than by n-point value. Binary searching is particularly

important for applications in higher dimensions since a

node contains 2n `quadrants'.

In our example, the value of the next-match is initially

unknown: ??????. Our search for the next-match

proceeds as follows:

Step 1: Tree Level 1: A binary search of the

root node shows that quadrant number 00 is the lowest

numbered quadrant intersecting with the query region.

It also contains the point whose derived-key is the

current-key. We know this because the top 2 bits of

the current-key are also 00. Quadrant 00 may therefore

contain a point which lies within the query region and

whose derived-key is equal to or minimally greater than

the current-key. The next-match is tentatively modi�ed

to 00????.

We note that the higher numbered 2 quadrants (ie

10 and 11) also intersect with the query region and

that if the next-match is not found in a leaf which is

a descendent of quadrant number 00, then it will be

found in one of these.

Step 2: Tree Level 2: The search now proceeds down

one level to the node in level 2 pointed to by quadrant

numbered 00 in the root. (In e�ect, the search space

is restricted to one of the quadrants in the root node).

Although all of the quadrants in the node at level 2

intersect with the query region, the binary search �rst

rejects the lower numbered 2 quadrants (ie 00 and 01)

and then the lower of the other two (ie 10) because

the current-key lies within quadrant numbered 11. We

know this because the middle 2 bits of the current-key

are 11. We must therefore search for the next-match in

this quadrant. The next-match is tentatively modi�ed

to 0011??.

Note that there is no higher numbered quadrant

within the node intersecting with the query region.

Step 3: Tree Level 3: The search now proceeds down

one level to the node in level 3 pointed to by quadrant

numbered 11 in the node searched in step 2. The binary

search �nds that the query region intersects the lower

numbered 2 quadrants only but that the bottom 2 bits of

the current-key (ie 10) place it in the upper 2 numbered

quadrants. The next-match therefore does not lie in the

node currently being searched. No point lying within

the intersection of the current node and the query region

can have a derived-key equal to or greater than the

current-key.

Step 4: Tree Level 1: The search back-tracks

up to the root node which was found in step 1 to

contain at least one quadrant intersecting with the

query region and containing points with derived-keys

all greater than the current-key. Two bits of the next-

match are removed for each level of ascension; thus

it is re-set to ??????. Binary searching resumes and

quadrant number 11 is found to be the lowest numbered

quadrant intersecting the query region, enabling the

next-match to be recalculated as 11????.

(More generally, back-tracking ascends to the lowest

level in the tree possible, where a sub-set of quadrants

intersect with the query region but enclose only points

mapping to higher derived-keys than the current key.
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If no such sub-set of quadrants exist at any level,

back-tracking cannot take place and this signi�es that

no next-match to the query exists. The query then

terminates. Note that back-tracking occurs at most

once only and that if it is possible then a next-match is

guaranteed to exist. Additionally, no further regard to

the value of the current-key is required.)

Step 5: Tree Level 2: The search now proceeds down

one level to the in level 2 node pointed to by quadrant

number 11 in the root. Binary searching determines the

lowest numbered quadrant intersecting with the query

region to be quadrant number 01. The next-match is

modi�ed to 1101??.

Step 6: Tree Level 3: The search now proceeds

in the level 3 node pointed to by quadrant numberd

01 in the node searched in step 5. Binary searching

determines the lowest numbered quadrant intersecting

with the query region to be quadrant number 10. The

next-match is now determined to be 110110 and the

calculation is complete.

The search process is expressed more formally as an

algorithm in [11] and in further detail still in [10].

5.3 Binary Searching in Nodes

Broadly, the approach described above can also be

applied to some curves other than the Hilbert Curve,

for example the Z-Order Curve. However, the Hilbert

Curve has at least n2n�1 di�erent node types which

complicates binary searching. In contrast, the Z-Order

Curve has a single node type only. Solving the problem

of how to perform binary searches within nodes in a

tree containing di�erent node types is crucial for the

viability of the application of the Hilbert Curve. In this

sub-section we describe our solution.

Before searching a node we de�ne the the current-

query-region as the intersection of the query region

and the sub-space de�ned by the node. As with the

original query region the current-query-region is de�ned

by lower and upper bound coordinates.

If the top bit of a coordinate is in `bit position 1',

then during a search of a node at tree level j, we

encapsulate the current-query-region with a pair of n-

points made up of bits taken from position j in the lower

and upper bound coordinates. They locate the current-

query-region within a search space de�ned by a node.

At the end of each iteration of a binary search

of quadrants within a node, we discard half of the

quadrants and search a smaller sub-set in the next

iteration. Apart from ensuring we focus on sets of

quadrants enclosing one or more points (at the leaf level)

mapping to derived-keys equal to or greater than the

current-key, we must focus on those intersecting with

the query region. The question immediately arises of

how do we know from quadrant derived-keys whether

lower and/or upper halves of numbered quadrants in a

sub-set intersect with the query region?

Solving this requires a function which returns a

quadrant's n-point given its derived-key. The function

also needs to know which type of node (ie orientation of

�rst-order Hilbert Curve) is currently being searched.

We call this function d to c(). Implementation is

particularly simple where state diagrams are employed.

As a result of the symmetrical nature of the Hilbert

Curve, we note the following. If the derived-keys of a

sub-set of quadrants are in the range

[ lowest; : : : ;max-lower; min-higher; : : : ; highest ]

then all of the quadrants whose derived-keys are in

the lower sub-range [ lowest; : : : ;max-lower ] have the

same value, 0 or 1, in their coordinates in one par-

ticular dimension, i. Similarly, all of the quad-

rants whose derived-keys are in the higher sub-range

[ min-higher; : : : ; highest ] have the opposite coordinate

value, 1 or 0, in the same dimension, i. This character-

istic applies in exactly one dimension only.

We also recall that quadrants whose derived-keys are

consecutive are adjacent in space. Thus an n-point vari-

able pd (short for `partitioning dimension'), containing

a single non-zero bit corresponding to dimension i and

dividing this range into two, is evaluated as

pd( d to c (max-lower) � d to c (min-higher)

where the symbol � is the bitwise exclusive-or operator.

It now remains to be found whether the quadrants

whose derived-keys are in the lower sub-range all have

the value 0 or 1 in dimension i. This is done by testing

the value of the expression

d to c (max-lower) ^ pd

where the symbol ^ is the bitwise `and' operator. If it

evaluates to non-zero, then these quadrants all have the

value 1 in dimension i, otherwise they have the value 0.

Finally, we are able to determine whether the current-

query-region intersects the quadrants whose derived-

keys are in the lower sub-range. For there to be

an intersection, either (or both) of the lower and

upper bounds of the current-query-region must have the

same value in its coordinate for dimension i as these

quadrants.

We determine whether the current-query-region in-

tersects the half of the sub-set of quadrants of current

interest whose derived-keys are in the higher sub-range

in a similar manner.

We conclude this section by illustrating the operation

of the binary search with an example showing how step

5 in the example from section 5.2 is executed.

The query lower and upper bound coordinates are

h 010; 000 i and h 100; 010 i respectively.
At the end of step 4, the search space is restricted to

quadrant number 11 in the root node. This corresponds

5



to a region with lower and upper bound coordinates of

h 100; 000 i and h 111; 011 i.
In restricting the query region we compare each

coordinate of its bounds with those of the restricted

search space. Query lower bound coordinates which

are less than the restricted search space equivalents

are increased and upper bound coordinates which are

greater than the restricted search space equivalents are

reduced. The current-query-region is then bounded by

the points h 100; 000 i and h 100; 010 i.
In step 5, the n-points encapsulating the current-

query-region are formed from the second from top bits

taken from its coordinates. Thus the lower bound n-

point is 00 and the uper bound n-point is 01.

In the �rst iteration of the binary search of the

quadrants of the node in tree level 2, we determine

whether the query intersects the lower numbered pair

(ie 00 and 01) as follows: Firstly, pd is calculated as

d to c(01) � d to c(10) which evaluates to 01 � 00,

ie 01. This signi�es that quadrant numbers 00 and 01

have the same coordinate values in the y dimension.

Secondly, d to c(01) ^ pd evaluates to 01 ^ 01, ie 01.

This signi�es that quadrant numbers 00 and 01 have the

value of 1 for their coordinates in the y dimension.

Since the n-point encapsulating the upper bound of

the current-query-region also has a value of 1 for its

y coordinate, the current-query-region must intersect

with the lower numbered two quadrants within the

node. (Note that since the lower bound's n-point has a

zero-valued y coordinate, the current-query-region must

also intersect with the higher numbered quadrants; this

is con�rmed by Fig. 2).

In a similar way, the second iteration of the binary

search now �nds the lowest quadrant number, from the

sub-set of quadrant numbers 00 and 01, intersecting

with the current-query-region. As we see from Fig. 2,

the result is quadrant number 01.

6 Conclusion

The application and algorithms described in this paper

have been implemented as fully functioning software,

hitherto in up to 16 dimensions but this could easily

be extended. Preliminary experimentation using arti-

�cially generated data produces promising results indi-

cating that the concepts scale well with increasing data

volumes and numbers of dimensions.
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